Edexcel Maths C2

Topic Questions from Papers

Integration

6. A river, running between parallel banks, is 20 m wide. The depth, y metres, of the river measured at a point x metres from one bank is given by the formula

$$y = \frac{1}{10} x \sqrt{(20 - x)}, \quad 0 \le x \le 20.$$

(a) Complete the table below, giving values of y to 3 decimal places.

X	0	4	8	12	16	20
у	0		2.771			0

(2)

(b) Use the trapezium rule with all the values in the table to estimate the cross-sectional area of the river.

(4)

Given that the cross-sectional area is constant and that the river is flowing uniformly at 2 ms^{-1} ,

(c) estimate, in m³, the volume of water flowing per minute, giving your answer to 3 significant figures.

(2)

10.

Figure 1 shows part of the curve C with equation $y = 2x + \frac{8}{x^2} - 5$, x > 0.

The points P and Q lie on C and have x-coordinates 1 and 4 respectively. The region R, shaded in Figure 1, is bounded by C and the straight line joining P and Q.

(a) Find the exact area of R.

(8)

(b) Use calculus to show that y is increasing for x > 2.

		Leave blank
Q	Question 10 continued	
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		Q10
-	(Total 12 mayles)	
	(Total 12 marks) TOTAL FOR PAPER: 75 MARKS	
	END	

6. The speed, $v \text{ m s}^{-1}$, of a train at time t seconds is given by

$$v = \sqrt{(1.2^t - 1)}, \quad 0 \leqslant t \leqslant 30.$$

The following table shows the speed of the train at 5 second intervals.

t	0	5	10	15	20	25	30
v	0	1.22	2.28		6.11		

(a) Complete the table, giving the values of v to 2 decimal places.

(3)

The distance, s metres, travelled by the train in 30 seconds is given by

$$s = \int_0^{30} \sqrt{(1.2^t - 1)} dt.$$

(b)	Use the trapezium r	rule, with all the	values from	your table, to	o estimate the	value of s
-----	---------------------	--------------------	-------------	----------------	----------------	------------

(3)

Figure 3

Leave blank

9.

Figure 3 shows the shaded region R which is bounded by the curve $y = -2x^2 + 4x$ and the line $y = \frac{3}{2}$. The points A and B are the points of intersection of the line and the curve.

Find

(a) the x-coordinates of the points A and B, (4)

(b) the exact area of R.

(6)

Question 9 continued		blank
		Q
	(Total 10 a	marks)
	TOTAL FOR PAPER: 75 M	
1	END	
,	41 12·	

Use calculus to find the exact value of $\int_{1}^{2} \left(3x^{2} + 5 + \frac{4}{x^{2}}\right) dx.$	(5)
	(3)

5. (a) In the space provided, sketch the graph of $y = 3^x$, $x \in \mathbb{R}$, showing the coordinates of the point at which the graph meets the y-axis.

(2)

(b) Complete the table, giving the values of 3^x to 3 decimal places.

х	0	0.2	0.4	0.6	0.8	1
3^x		1.246	1.552			3

(2)

(c) Use the trapezium rule, with all the values from your table, to find an approximation for the value of $\int_0^1 3^x dx$.

10.

Figure 3 shows a sketch of part of the curve with equation $y = x^3 - 8x^2 + 20x$. The curve has stationary points *A* and *B*.

(a) Use calculus to find the x-coordinates of A and B.

(4)

(b) Find the value of $\frac{d^2y}{dx^2}$ at A, and hence verify that A is a maximum.

(2)

The line through B parallel to the y-axis meets the x-axis at the point N. The region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the line from A to N.

(c) Find
$$\int (x^3 - 8x^2 + 20x) dx$$
.

(3)

(d) Hence calculate the exact area of R.

(5)

Question 10 continued		Leave blank
Comments of the second		
		Q10
	(Total 14 marks)	
	TOTAL FOR PAPER: 75 MARKS	
	END	
	END	

1	
1	•

 $f(x) = x^3 + 3x^2 + 5.$

Find

(a) f''(x),

(b) $\int_{1}^{2} f(x) dx$.

(3)

7.

Figure 1 shows a sketch of part of the curve C with equation

$$y = x(x-1)(x-5)$$
.

Use calculus to find the total area of the finite region, shown shaded in Figure 1, that is between x = 0 and x = 2 and is bounded by C, the x-axis and the line x = 2.

	physicsandmathstutor.com	June 2007
. Evaluate $\int_{-\infty}^{8} \frac{1}{\sqrt{x}} dx$, giving	g your answer in the form $a+b\sqrt{2}$, where a	and b are integers.
$J_1 \sqrt{\lambda}$		(4)

Q1

5. The curve C has equation

$$y = x\sqrt{(x^3 + 1)}, \qquad 0 \leqslant x \leqslant 2.$$

(a) Complete the table below, giving the values of y to 3 decimal places at x = 1 and x = 1.5.

X	0	0.5	1	1.5	2
у	0	0.530			6

(2)

(b) Use the trapezium rule, with all the y values from your table, to find an approximation for the value of $\int_0^2 x \sqrt{(x^3+1)} dx$, giving your answer to 3 significant figures. (4)

Figure 2

Figure 2 shows the curve C with equation $y = x\sqrt{(x^3 + 1)}$, $0 \le x \le 2$, and the straight line segment l, which joins the origin and the point (2, 6). The finite region R is bounded by C and l.

(c) Use your answer to part (b) to find an approximation for the area of *R*, giving your answer to 3 significant figures.

(3)

Question 5 continued	b

7.

In Figure 2 the curve C has equation $y = 6x - x^2$ and the line L has equation y = 2x.

(a) Show that the curve C intersects the x-axis at x = 0 and x = 6.

(1)

(b) Show that the line L intersects the curve C at the points (0, 0) and (4, 8).

(3)

The region R, bounded by the curve C and the line L, is shown shaded in Figure 2.

(c) Use calculus to find the area of R.

(6)

	1
uestion 7 continued	

2.

$$y = \sqrt{(5^x + 2)}$$

(a) Complete the table below, giving the values of y to 3 decimal places.

X	0	0.5	1	1.5	2
y			2.646	3.630	

(2)

(b) Use the trapezium rule, with all the values of **y** from your table, to find an approximation for the value of $\int_0^2 \sqrt{(5^x+2)} \, dx$.

(4)
1	-	,

8.

Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = 10 + 8x + x^2 - x^3$.

The curve has a maximum turning point A.

(a) Using calculus, show that the x-coordinate of A is 2.

(3)

The region R, shown shaded in Figure 2, is bounded by the curve, the y-axis and the line from O to A, where O is the origin.

(b) Using calculus, find the exact area of R.

(8)

2.

Figure 1

Figure 1 shows part of the curve C with equation y = (1+x)(4-x).

The curve intersects the x-axis at x = -1 and x = 4. The region R, shown shaded in Figure 1, is bounded by C and the x-axis.

Use calculus to find the exact area of R.

(5	J

3.

$$y = \sqrt{10x - x^2}.$$

(a) Complete the table below, giving the values of y to 2 decimal places.

х	1	1.4	1.8	2.2	2.6	3
у	3	3.47			4.39	

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximation for the value of $\int_{1}^{3} \sqrt{(10x-x^2)} dx$.

1. Use calculus to find the value of		b b
$\int_{1}^{4} \left(2x + 3\sqrt{x}\right) dx.$		
• 1	(5)	
		Q1
	(Total 5 marks)	

4. (a) Complete the table below, giving values of $\sqrt{(2^x + 1)}$ to 3 decimal places.

X	0	0.5	1	1.5	2	2.5	3
$\sqrt{(2^x+1)}$	1.414	1.554	1.732	1.957			3

(2)

Figure 1

Figure 1 shows the region **R** which is bounded by the curve with equation $\mathbf{y} = \sqrt{(2^x + 1)}$, the **x**-axis and the lines $\mathbf{x} = 0$ and $\mathbf{x} = 3$

(b) Use the trapezium rule, with all the values from your table, to find an approximation for the area of ${\bf R}$.

(4)

(c) By reference to the curve in Figure 1 state, giving a reason, whether your approximation in part (b) is an overestimate or an underestimate for the area of **R**.

(2)

uestion 4 continued		

7.

Figure 2

(a) Find the coordinates of the point and the point .

(2)

(b) Show that the point (5, 4) lies on C.

(1)

(c) Find
$$\int (x^2 - 5x + 4) dx$$
.

(2)

(d) Use your answer to part (c) to find the exact value of the area of R.

(5)

	Leave blank
Question 7 continued	

1.

$$\mathbf{y} = 3^{\mathbf{x}} + 2\mathbf{x}$$

(a) Complete the table below, giving the values of y to 2 decimal places.

X	0	0.2	0.4	0.6	0.8	1
y	1	1.65				5

(2)

(b) Use the trapezium rule, with all the values of \boldsymbol{y} from your table, to find an approximate

value for
$$\int_0^1 (3^x + 2x) dx$$
.

8.

Figure 2

Figure 2 shows a sketch of part of the curve C with equation

$$\mathbf{y} = \mathbf{x}^3 - 10\mathbf{x}^2 + \mathbf{k}\mathbf{x},$$

where \mathbf{k} is a constant.

The point P on C is the maximum turning point.

Given that the x-coordinate of P is 2,

(a) show that $\mathbf{k} = 28$.

(3)

The line through P parallel to the x-axis cuts the y-axis at the point $\,$. The region R is bounded by C, the y-axis and P $\,$, as shown shaded in Figure 2.

(b) Use calculus to find the exact area of R.

1	6)	
•	U)	

4.

Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$y = (x+1)(x-5)$$

The curve crosses the x-axis at the points A and B.

(a) Write down the x-coordinates of A and B.

(1)

The finite region R, shown shaded in Figure 1, is bounded by C and the x-axis.

(b) Use integration to find the area of R.

- 1	4	١
•	v	,
•	_	,

nestion 4 continued	

6.

$$y = \frac{5}{3x^2 - 2}$$

(a) Complete the table below, giving the values of y to 2 decimal places.

х	2	2.25	2.5	2.75	3
у	0.5	0.38			0.2

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate value for $\int_{3}^{3} \frac{5}{3x^{2}-2} dx$.

(4)

Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = \frac{5}{3x^2 - 2}$, x > 1.

At the points A and B on the curve, x = 2 and x = 3 respectively.

The region S is bounded by the curve, the straight line through B and (2, 0), and the line through A parallel to the y-axis. The region S is shown shaded in Figure 2.

(c) Use your answer to part (b) to find an approximate value for the area of S.

(3)

Question 6 continued	blank

9.

Figure 3

The straight line with equation y = x+4 cuts the curve with equation $y = -x^2 + 2x + 24$ at the points A and B, as shown in Figure 3.

(a) Use algebra to find the coordinates of the points A and B.

(4)

The finite region R is bounded by the straight line and the curve and is shown shaded in Figure 3.

(b) Use calculus to find the exact area of R.

(/)	

(Total 11 marks)	Q9

6.

Figure 1

Figure 1 shows the graph of the curve with equation

$$y = \frac{16}{x^2} - \frac{x}{2} + 1, \qquad x > 0$$

The finite region R, bounded by the lines x = 1, the x-axis and the curve, is shown shaded in Figure 1. The curve crosses the x-axis at the point (4, 0).

(a) Complete the table with the values of y corresponding to x = 2 and 2.5

х	1	1.5	2	2.5	3	3.5	4
у	16.5	7.361			1.278	0.556	0

(2)

(b) Use the trapezium rule with all the values in the completed table to find an approximate value for the area of *R*, giving your answer to 2 decimal places.

(4)

(c) Use integration to find the exact value for the area of R.

(5)

Question 6 continued	blank

5.

Figure 2

Figure 2 shows the line with equation y = 10 - x and the curve with equation $y = 10x - x^2 - 8$

The line and the curve intersect at the points A and B, and O is the origin.

(a) Calculate the coordinates of A and the coordinates of B.

(5)

The shaded area R is bounded by the line and the curve, as shown in Figure 2.

(b) Calculate the exact area of R.

(7)

estion 5 continued	

7.

$$y = \sqrt{3^x + x}$$

(a) Complete the table below, giving the values of y to 3 decimal places.

х	0	0.25	0.5	0.75	1
у	1	1.251			2

(2)

(b) Use the trapezium rule with all the values of y from your table to find an approximation for the value of $\int \sqrt{3^x + x} \, dx$

You must show clearly how you obtained your answer.

(4)

Figure 2

The finite region R, as shown in Figure 2, is bounded by the x-axis and the curve with equation

$$y = 27 - 2x - 9\sqrt{x - \frac{16}{x^2}}, \quad x > 0$$

The curve crosses the x-axis at the points (1, 0) and (4, 0).

(a) Complete the table below, by giving your values of y to 3 decimal places.

Х	1	1.5	2	2.5	3	3.5	4
y	0	5.866		5.210		1.856	0

(2)

(b) Use the trapezium rule with all the values in the completed table to find an approximate value for the area of *R*, giving your answer to 2 decimal places.

(4)

(c) Use integration to find the exact value for the area of R.

(6)

Question 9 continued	Leave blank
	Q9
(Total 12 manile)	
(Total 12 marks) TOTAL FOR PAPER: 75 MARKS	
END	

2.

$$y = \frac{x}{\sqrt{(1+x)}}$$

(a) Complete the table below with the value of y corresponding to x = 1.3, giving your answer to 4 decimal places.

(1)

х	1	1.1	1.2	1.3	1.4	1.5
у	0.7071	0.7591	0.8090		0.9037	0.9487

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an approximate value for

$$\int_{1}^{1.5} \frac{x}{\sqrt{(1+x)}} \mathrm{d}x$$

giving your answer to 3 decimal places.

You must show clearly each stage of your working.

	4	
1	41	
ı	T ,	

7.

Figure 1

The line with equation y = 10 cuts the curve with equation $y = x^2 + 2x + 2$ at the points A and B as shown in Figure 1. The figure is not drawn to scale.

(a) Find by calculation the x-coordinate of A and the x-coordinate of B.

(2)

The shaded region R is bounded by the line with equation y = 10 and the curve as shown in Figure 1.

(7)

20

uestion 7 continued		

4.

$$y = \frac{5}{(x^2 + 1)}$$

(a) Complete the table below, giving the missing value of y to 3 decimal places.

х	0	0.5	1	1.5	2	2.5	3
y	5	4	2.5		1	0.690	0.5

(1)

Figure 1

Figure 1 shows the region R which is bounded by the curve with equation $y = \frac{5}{(x^2 + 1)}$, the x-axis and the lines x = 0 and x = 3

(b) Use the trapezium rule, with all the values of *y* from your table, to find an approximate value for the area of *R*.

(4)

(c) Use your answer to part (b) to find an approximate value for

$$\int_0^3 \left(4 + \frac{5}{(x^2 + 1)}\right) \mathrm{d}x$$

giving your answer to 2 decimal places.

(2)

estion 4 continued	

6.

Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$y = x(x+4)(x-2)$$

The curve C crosses the x-axis at the origin O and at the points A and B.

(a) Write down the x-coordinates of the points A and B.

(1)

The finite region, shown shaded in Figure 3, is bounded by the curve C and the x-axis.

(b) Use integration to find the total area of the finite region shown shaded in Figure 3. (7)

estion 6 continued	

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$